Category: Roadways

Why are children getting hurt in the street because of “looming”?

Adults are better than children at detecting the speed of a car that’s traveling faster than 20 miles per hour and are more likely to avoid crossing, thus not getting hit. 

Director of New York City-based Transportation Alternatives Paul Steely-White asked on Twitter for a plain English translation of this three-year old journal article about vehicle speeds and something called “looming”.

The article is called “Reduced Sensitivity to Visual Looming Inflates the Risk Posed by Speeding Vehicles When Children Try to Cross the Road”.

Skip to the end if you want the plain English translation, but I’ve posted the abstract below followed by excerpts from Tom Vanderbilt’s Traffic.

ABSTRACT: Almost all locomotor animals respond to visual looming or to discrete changes in optical size. The need to detect and process looming remains critically important for humans in everyday life. Road traffic statistics confirm that children up to 15 years old are overrepresented in pedestrian casualties. We demonstrate that, for a given pedestrian crossing time, vehicles traveling faster loom less than slower vehicles, which creates a dangerous illusion in which faster vehicles may be perceived as not approaching. Our results from perceptual tests of looming thresholds show strong developmental trends in sensitivity, such that children may not be able to detect vehicles approaching at speeds in excess of 20 mph. This creates a risk of injudicious road crossing in urban settings when traffic speeds are higher than 20 mph. The risk is exacerbated because vehicles moving faster than this speed are more likely to result in pedestrian fatalities.

The full text is free to download, but I think Steely-White needs to learn more now, so I pulled out my favorite book about driving, Tom Vanderbilt’s “Traffic”.

Page 95-97:

For humans, however, distance, like speed, is something we often judge rather imperfectly. Unfortunately for us, driving is really all about distance and speed. Consider a common and hazards maneuver in driving: overtaking a car on a two-lane road another approaches in the oncoming lane. When objects like cars are within twenty or thirty feet, we’re good at estimating how far away they are, thanks to our binocular vision (and the brain’s ability to construct a single 3D image from the differing 2D views each eye provides). Beyond that distance, both eyes are seeing the same view in parallel, and so things get a bit hazy. The farther out we go, the worse it gets: For a car that is twenty feet away, we might be accurate to within a few feet, but when it is three hundred yards away [900 feet], we might be off by a hundred yards [300 feet]. Considering that it takes about 279 feet for a car traveling at 55 miles per hour to stop (assuming an ideal average reaction time of 1.5 seconds), you can appreciate the problem of overestimating how far away an approaching car is – especially when they’re approaching you at 55 miles per hour.

[Here comes the keyword used in the journal article, “looming”]

Since we cannot tell exactly how far away the approaching car might be we guess using spatial cues, like its position relative to a roadside building or the car in front of us. We can also use the size of the oncoming car itself as a guide. We know it is approaching because its size is expanding or looming on our retina.

But there are problems with this. The first is that viewing objects straight on, as with the approaching car, does not provide us with a lot of information.

[…]

If all this is not enough to worry about there’s also the problem of the oncoming cars speed. A car in the distance approaching 20 miles per hour makes passing easy, but what if it is doing 80 miles per hour? The problem is this: We cannot really tell the difference. Until, that is, the car gets much closer — by which time it might be too late to act on the information.

[the topic continues]

Plain English translation

However, nothing I found in Traffic relates children and “looming”. The bottom line is that children are worse than adults at detecting the speed of a car coming in the cross direction and thus decide wrongly on when to cross the street.

Update: Based on Vanderbilt’s writing, it seems that humans cannot really be taught how to compensate for looming, to build a better perceptual model in the brain to detect the difference between cars traveling 20 and 80 MPH. If this is true, and I’d like to see research of pedestrian marketing and education programs designed for children, it may be that we should stop trying this approach.

Smartphones replace cars. Cars become smartphones.

Teens’ smartphone use means they don’t want to drive. Car makers’ solution? Turn cars into smartphones.

The Los Angeles Times reported in March 2013, along with many other outlets, that “fewer 16-year-olds are rushing to get their driver’s licenses today than 30 years ago as smartphones and computers keep adolescents connected to one another.”

Smartphones maintain friendships more than any car can. According to Microsoft researcher Danah Boyd, who’s been interviewing hundreds of teenagers, “Teens aren’t addicted to social media. They’re addicted to each other.” (Plus not every teen needs a car if their friends have one. Where’s Uber for friends? That, or transit or safe cycle infrastructure, would help solve the “I need a ride to work at the mall” issue.)

Driving is on the decline as more people choose to take transit, bike, walk, or work from home (and not unemployment).

intel cars with bicycle parts

Marketing images from Intel’s blog post about cars becoming smartphones.

What’s a car maker to do?

The first thing a car maker does to fight this (losing) battle is to turn the car into a smartphone. It’s definitely in Intel’s interest, and that’s why they’re promoting the story, but Chevrolet will soon be integrating National Public Radio – better known as NPR – as an in-dash app. It will use the car’s location to find the nearest NPR affiliate. Yeah, my smartphone already does that.

The second thing they do is to market the product differently. Cars? They’re not stuck in traffic*, they’re an accessory to your bicycle. Two of the images used in Intel’s blog post feature bicycles in some way. The first shows a bicycle helmet sitting on a car dashboard. The second shows how everyone who works at a proposed Land Rover dealership is apparently going to bike there, given all the bikes parked at an adjacent shelter.

The new place to put your smartphone when you take the train.

* I’m looking at you, Nissan marketing staff. Your commercial for the Rogue that shows the mini SUV driving atop a train full of commuters in order to bypass road congestion (and got a lot of flack) is more ridiculous than Cadillac’s commercial showing a car blowing the doors of other cars, while their drivers look on in disbelief, in order to advertise the 400+ horsepower it has (completely impractical for driving in the urban area the commercial showcases).

Chicago Crash Browser, miraculously, has 2012 bicycle and pedestrian crash data

Screenshot shows that you can choose your own search radius. When researching, be sure to copy the permalink so you can revisit your results. 

I’ve upgraded the Chicago Crash Browser, my web application that gives you some basic crash and injury statitics for bicyclist and pedestrian crashes anywhere in Chicago, to include 2012 data. It took the Illinois Department of Transportation eight months to compile the data and it took me four months to finally get around to uploading it into my database. While I spent that time, I made some improvements to the usability of the app and output more information. Since the last major changes I made (back in February 2013) I’ve gained two code contributors (Richard and Robert) making this my first communal project on GitHub.

I know that it’s been used as part of research in the 46th Ward participatory budgeting process for 2013, and by residents in the 26th Ward to show Alderman Maldonado the problem intersections in the Humboldt Park area. Transitized recently included pedestrian crash stats obtained from the Crash Browser in a blog post about pedestrianizing Michigan Avenue in Streeterville.

The first change I made was adding another zoom level, number 19, so you can get closer to the data. I made some changes to count how many people were injured and total them. You can now choose your search distance in multiples of 50 feet between 50 and 200, inclusive. As is typical, I get sidetracked when I notice errors on the map. Thankfully I just fire up JOSM and correct them so the next person that looks at the map sees the correction. Future changes I want to make include upgrading to the latest jQuery, LeafletJS, and Leaflet plugins. I’d also like to migrate to Bootstrap to improve styling and add responsive design so it works better on small screens.

Sign up for the newsletter where I’ll send a couple emails each year describing new changes (I’ve so far only published one newsletter).

Getting a little closer to understanding Chicago’s pothole-filling performance status

Tom Kompare updated his web application that tracks the progress of potholes based on information in the city’s data portal in response to my query about how many potholes the city fills within 72 hours, which is the Chicago Department of Transportation’s performance measure.

He wrote to me via the Open Government Chicago group:

Without completely rewriting http://potholes.311services.org, I added a count of the number of open (not yet addressed) pothole repair tickets (requests) that exceed 3 days old. As of today, the data from the City of Chicago’s Data Portal shows 1,334 or the 1,404 open tickets in the 311 system are older than three days.

Full disclosure: The web app actually looks for greater than 4 days old. The Data Portal’s pothole data are only updated once a day, so these data are always a day old. 4 – 1 = 3.

Keep in mind that this web app only shows how many are yet to be addressed, and does not count how many have been patched within CDOT’s 3-day goal during some arbitrary time period. That is a much more intense calculation that this pure client-side Javascript web application can handle due to bandwidth restrictions on mobile (3/4G). This web app already pushes the mobile envelope with the amount of data downloaded. I can fix that, but, again, not without a rewrite.

Still, 1,334 open repair requests (12/16/2013 Data Portal data) is quite different than the number of open repair requests reported by CDOT (560 in Alley, 193 on street) on 12/16/2013. I’m not sure what is the difference.

This reminds me of a third issue with the way CDOT is presenting pothole performance data online (the first being that it’s PDF, the second that it doesn’t work in Safari). The six PDF files are overwritten for every new day of data. If you want information from two days ago, well you better have downloaded the PDF from two days ago!

CDOT misses the lesson on open data transparency

Publishing the wrong measurement as a PDF isn’t transparency.

The Chicago Department of Transportation released the first progress report to its Chicago Forward Action Agenda in October, two and a half years after the plan – the first of its kind – was published. I’ve spent an inordinate amount of time reading it and putting off a review. Why? It’s been a difficult to compare the original and update documents. The update is extremely light on specifics and details for the many goals in the Action Agenda, which should have organizational (like record keeping and efficiency improvements) and public impacts (like figuring out which intersections have the most crashes). I’ll publish my in-depth review this week.

Aside from missing specifics and details, the update presents information differently and is missing status updates for the three to five “performance measures” in each chapter. It was difficult to understand CDOT’s reporter progress without holding the original and update side-by-side. I think listing the original action item, the progress symbol, and then a status update would have been an easier way to read the document.

The update measures some action items differently than originally called for, and the way pothole repair was presented, a problem for people bicycling and driving, caught my analytical eye.

CDOT states a pothole-filling performance measure of the percentage, which it desires to be increased, “patched or fixed within 72 hours of being reported” but the average, according to the website Chicago Potholes, which tracks the city’s open data, is 101 days*. The update doesn’t necessarily explain why, writing “the 72 hour goal for filling potholes is not always feasible due to asphalt plant schedules” and nothing related to the performance measure.

As originally written, the only way to note the performance would be to list the percentage of potholes filled within the goal time, at the beginning and in the update. This performance measure has a complementary action item – an online dashboard – which could have provided the answer, but didn’t.

CDOT published that dashboard this summer as a series of six PDF files that update daily and you can hardly call it useful.

Publishing PDF files in the day and age of open government data – popular with President Obama and Mayor Rahm Emanuel – is unacceptable. Even if they are accessible – meaning you can copy/paste the text – they are poor outlets for data given the nationally-renowned civic innovation changes that Emanuel has succeeded in establishing.

There’s another problem: the dashboard file for pothole tracking doesn’t track the time it takes to close a pothole request, nor the number of pothole requests that are patched within 72 hours. It simply tells the number completed yesterday, the year to date, and the number of unpatched requests. (I’ve posted the pothole-tracking file to Scribd because the dashboard [PDF] doesn’t work in Safari; I also notified city staff to this problem which they acknowledged over three weeks ago.)

The “Chicago Works For You” website reports a different metric, that of the number of requests made each day, distributed by ward.

I discussed the proposed dashboard with former commissioner Gabe Klein over two years ago. He said he wanted to create a dashboard of projects “we’re working on that’s updated once a week.” Given Klein’s high professional accessibility to myself, John Greenfield and other reporters, I’ll give him and CDOT a pass for not doing this. But Klein also said, “I’m really big on transparency and good communication. When I left [Washington,] D.C. our [Freedom of Information Act Requests] were dramatically lowered.”

I’ll consider the pothole performance measure and action item “in need of major progress.”

* For stats geeks, the median is 86 and standard deviation is ±84.