Category: GIS

Update on GIS information for Haiti

We all woke up this morning to see news that another earthquake has happened in Haiti, near the center of the first one eight days ago.

“The United Nations Development Programme (UNDP) employed nearly 400 Haitians in cash-for-work activities to jump start the local economy and facilitate the delivery of urgently needed humanitarian assistance.”

This post is an update to my previous article about how GIS is used for disaster relief efforts. I recently came across a webpage on Harvard’s China Earthquake Geospatial Research Portal that lists copious, up-to-date, GIS-compatible data from organizations around the world. The portal began in response to the Sichuan, China, earthquake in May 2008.

Visit the Haiti GIS Data Portal now.

For new GIS students, this would be a great starting point for a class final project. The Portal is hosting the datasets as a public service and invites anyone with relevant data to submit it to the site operators for wider dissemination. Data comes from the United Nations, several universities, OpenStreetMap contributors, and the German Center for Air and Space Travel, among others.

“Petty Officer 3rd Class Cameron Croteau, a Damage Controlman aboard the Coast Guard Cutter Oak, carries an injured Haitian girl to an awaiting Coast Guard HH-60 Jayhawk helicopter Tuesday, Jan. 19, 2010. Coast Guard and Navy helicopters airlifted injured Haitians to a private hospital in Milot, Haiti. U.S. Coast Guard photo by Petty Officer 3rd Class Brandyn Hill.”

As I mentioned in the previous post, there are many photos on Flickr when you search for “haiti earthquake.” When I wrote the post on January 14, 2010, there were only about 300 photos, and now there are over 6,900. Only 1,200 have a Creative Commons license, though (both of the photos above have a Creative Commons license). It seems that the United States Military, the United Nations, and major relief organizations are providing the majority of photos. And they’re uploading them fast. The number of photos on Flickr jumped by 50 from when I started this paragraph.

How GIS helps earthquake relief efforts for Haiti

While Geographic Information systems software can definitely produce pretty maps, its power lies in analyzing data and plotting or comparing sensory or observed data to spatial data (like roads or terrain). The earthquake in Haiti rocked the capital city, Port-au-Prince with a shock of magnitude 7.0 on Tuesday, January 12, 2010.

A photo from a United States military flyover shows damage in the Port of Port-au-Prince, Haiti. Photo taken by Petty Officer 2nd Class Sondra-Kay Kneen and uploaded by Chuck Simmins.

There are several applications for GIS to help with earthquake response, and two blog posts that appeared this morning shed light on how.

The first article came from ESRI, the California-based makers of ArcGIS, the most used GIS application. The article linked to a user-built map on their ArcGIS Online service showing on Bing maps where the earthquake and its aftershocks struck (the map sits behind a registration wall). ESRI even has a disaster response team that helps organizations get their response projects off the ground quickly.

Infrastructurist posted the second article, showing some before and after satellite imagery of Haiti, provided by Google and GeoEye.

So what can GIS do? From ESRI’s list, “GIS for Disaster Response“:

  • Rapid identification of potential shelter/housing locations (schools, libraries, churches, public buildings) appropriate for supporting affected populations.
  • Determine how many tents will be needed based on the location of populations affected by the disaster.
  • Analyze areas where large numbers of refugees can establish camps out of harm’s way that are accessible for supply delivery and have access to water and other resources necessary to support large numbers of people.
  • Many more examples.

Want more information? Here’s where to get it:

Urban data page updated

Like any good website owner and author, I track statistics (or analytics as people like to call them now). The most important information the reports tell me is how people found my site: either through keyword searches, or links from related webpages.

Recently, a visitor came across my site because of a search for “amtrak routes gis.” I suspect they were looking for shapefiles they could load into Geographic Information System software containing Amtrak routes and stations. My blog showed up on the second results page in Google and they came to my post, “Why Amtrak’s not on time,” about the factors that influence the passenger rail company’s timeliness. The page doesn’t have what the visitor wants.

I decided to update my page, “Find urban data,” to aid future visitors. Also, if one person is looking for this information, it’s likely that others want it, too. I found the information, “amtrak routes gis,” in two places and in two formats.

First, the United States Department of Transportation’s Bureau of Transportation Statistics publishes national data in the “National Transportation Atlas.” You can find a shapefile with Amtrak stations. For Amtrak routes you must download the railway network shapefiles and then filter the information for the attributes that describe Amtrak.

The second source is an interactive KML file (more about KML) that you can load into Google Earth, view in Google Maps, or manipulate in another KML-compatible application.

Google Maps and Earth is the poor man’s GIS

For over four years, Google’s geography products have become the most popular geographic information systems on the Earth (no, the earth). Google is now as much a platform of GIS for computers and users as ESRI, the number one GIS software maker.

To continue its corporate goal of organizing the world’s information, Google has made sure to also organize the world’s (and other realms) geographic information.

Google’s free tools and products manipulate, map, reproduce and analyze geographic information:

  • Maps – the simplest source of satellite imagery for the public, although Microsoft’s TerraServer was probably first
  • Street View
  • Transit – including travel directions for trips on Transit
  • Ocean
  • Earth desktop software – includes Moon, Mars, Sky
  • My Maps
  • Yellow pages-style business listings
  • Driving and Walking Directions – including automobile traffic overlay
  • Keyhole Markup Language (KML) – a file format based on XML that allows for the easy sharing and portability of data about locations. I wrote about it here.
  • Maps API – this allows developers to include maps in their own applications and websites as well as build features on top of maps

These applications now allow anyone in the world with an internet connection* and a computer to start thinking about the world and neighborhood in which they live in terms of space, distance, the environment, land use, and most important of all the relationships between real life places and these greater themes. But not only will these instruments influence the thinking of individuals and the groups to which they belong, but they will give people tools to create.

What have people created with Google’s GIS tools?

I created a map that shows the locations of open grated metal bridges on bikeways (featured in the bike map) in Chicago. This is important to bicyclists because open grated metal bridges can be hazardous to them, especially those with high centers of gravity or narrow tires on their bikes. Bicyclists will most often encounter these bridges on trips into and out of the Central Business District. This map will help bicyclists find routes that avoid these bridges. Precipitation exacerbates the danger, especially if it’s actively raining, or snow isn’t melting.

UPDATE 12-03-10: I was looking for information on an upcoming Chicago Cyclocross meet and I found a great example of using the tools Google has created for everyone. See a screenshot of the map below:

I’m posting this image to show how easy it is to create a map that tells a story. The story here is a guide on how to be a participant or spectator at the meet. It points out places where people can park, cannot park, and where the restrooms are in relation to parking or the race course. See the full map.

What have you created? Leave a comment below.

Evolution of Google’s GIS toolbox

I believe that Google will continue to expand its array of GIS-related applications, and also expand their existing ones. I would like to see them create new connections between the applications they’ve already created. For example:

  • Google can mimic the attribute table essential in desktop GIS software (like ESRI’s ArcGIS, qGIS, or GRASS) by integrating their Docs web application with My Maps. I want to save my information in a Google Docs spreadsheet (either inputted directly online or uploaded from my computer), then create a custom map and assign a location to each of the records in my spreadsheet. Then, using tools shared between Docs and My Maps, I can automate the creation of colored points and lines for the records based on categories or numbers in my spreadsheet, much like the classification and symbology tools of desktop GIS software. For example, on my “open grated metal bridges” custom map discussed above, I want to create a spreadsheet with a column that has a yes or no value to the question, “Is the bridge treated?” All records with “yes” will have green dots, and all “no” values will have blue dots.
  • The reverse situation could also be made possible by an integration between My Maps and Google Docs. Let’s say I’m a clerk at my church and I need to group the congregants into geographically close clusters for purposes of assigning community service work. I’ve inputted all of their addresses into My Maps and added a point for every house. There’re only 40 houses on the map and I can see see about 5 clusters (to keep it simple I won’t introduce arithmetic means of finding clusters). I use a selection lasso in My Maps and select the points in my first cluster. Using a new Classify function I label these points part of Cluster 1 and color them purple – I also assign Cluster 1 to work at the nearest park. I continue for the remaining four clusters, assigning each cluster to help clean a different park. Once I’ve completed grouping the houses, I tell My Maps to generate for me a spreadsheet that lists the names and phone numbers and clean up time for all the congregants. Now I can quickly call everyone in Cluster 1 and give them their community service assignment which is convenient to where they live.
  • Google should open up its many data layers. Google has many data layers in its table of contents: They recently added real estate data, but they also have the locations of transit stations and bus stops (including timetables and route information), the addresses and phone numbers of businesses (like the Yellow Pages), as well as terrain in some cases and bike trails in others. If the data in these layers were open, map users could perform some basic analysis like counting the number of check cashing businesses within 1 mile for a study of banking behavior in low-income neighborhoods. Or a map users could find the gain in elevation on a bike trail over 4 miles to determine their ride’s difficulty. Another map user could use the transit information to calculate the level of bus service in a neighborhood by counting the number of stops available and the number of buses scheduled.

I’ll have to figure out a way Google can extract revenue from these features if I want to convince Google to produce them, but sometimes the company builds products and features before it figures out how to make money.

The importance of sharing data in KML format

The KML file is an important format in which to share locational data. KML was developed by a company called Keyhole, which Google purchased in 2004, and subsequently released Keyhole’s flagship product: Earth.

A Keyhole Markup Language file is a way to display on a map (particularly a 3D globe of Earth) a collection of points with a defined style. Google has added more functionality and style to the KML format, expanding the styles that can be applied and the information that can be embedded.

KML, like XML (eXtensible Markup Language), is extremely web-friendly. For a web application at work I developed, I included this PHP class that creates an KML file on-demand based on a predefined database query. The file contains locations and attributes of recently installed bike racks in Chicago. EveryBlock imports the file and its information into their location-based service, aggregating many news types around your block.

But a KML file is more important than being the native file for use within Google Earth. It’s an open source text file that can be manipulated by a number of software programs on any computer system on earth (or read on a printed page). It’s not encoded, like shapefiles, so I can read the file with my own mind and understand the data it would present in a compatible map viewer. I see lines of organized syntax describing points and polygons, listing their attributes in plain language.

Have you ever tried to see the “inside” of a shapefile? Only GIS programs can read them for you. KML provides data producers and consumers the opportunities to keep data open, available, and easy to use. We need locational data for our work, and we need tools to help us use it, not hide it.